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Energy-momentum spectrum of some two-particle lattice Schro¨dinger Hamiltonians
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We determine the excitation spectrum of some one and two-particleZd lattice Schro¨dinger Hamiltonians.
They occur as approximate Hamiltonians for the low-lying energy-momentum spectrum of diverse infinite
lattice nonlinear quantum systems. A unitary staggering transformation relates the low-energy-momentum
spectrum to the high-energy-momentum spectrum of the transformed operators. A feature for the one-particle
repulsive delta function Hamiltonian is that, in addition to the continuous band spectrum, there is a bound state
above the band, and the repulsive case spectrum and scattering can be obtained from the attractive potential
case by staggering. For the two-particle pair potential Hamiltonian, there are commuting self-adjoint energy-
momentum operators, and we determine the joint spectrum. For the case of ald pair potential, and equal
particle masses, for arbitrarily smallulu, l,0, andd>3, there is no bound state for small system momentum,
but a bound state exists below the band if the momentum is large. We find that the binding energy is an
increasing function of the system momentum. The existence of this bound state is in contrast with the con-
tinuum case, where the Birman-Schwinger bound excludes negative-energy bound states for small couplings;
this bound state is absent if the two masses are different. Other spectral results are also obtained for the large
coupling case. An eigenfunction expansion that uses products of plane waves in the sum and difference
coordinates is used to obtain the spectral results.
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I. INTRODUCTION

Recent investigations have considered the low-lying ex
tation spectrum of lattice Hamiltonians of diverse syste
with an infinite number of degrees of freedom@1–12#. Some
of the Hamiltonians that have been studied are those as
ated with: the mass, nonlinear spring system, or lattice sc
quantum field theory; the generator of the stochastic dyn
ics of weakly coupled Ginzburg-Landau models; and
transfer matrix of classical ferromagnetic spin systems
high temperature.

The joint spectrum of these Hamiltonians and the mom
tum operators, associated with lattice translations, adm
particle interpretation and the two-particle sector is analy
using a lattice version of a Bethe-Salpeter equation. The
der approximation gives a good qualitative picture of t
bound-state spectrum outside the two-particle band, with
orous confirmations already accomplished in some ca
controlling perturbations beyond the ladder approximat
~see, e.g.,@13,5# and the basic work@14#!.

The determination of elementary excitations in the abo
listed systems is of vital importance, as they are related,
spectively, to the time evolution of quantum fields, the rela
ation to equilibrium in the stochastic models, and the fall
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rate of equilibrium spin correlation functions.
In the ladder approximation, the Bethe-Salpeter equa

is, roughly speaking, the nonrelativistic two-body Schr¨-
dinger resolvent equation with a repulsive or attractive de
function pair potential.

The analysis of the above infinite systems involves va
ous restrictions on parameters of the system, i.e., small c
pling constants, large single-particle mass, zero or small
tem momentum, etc. As the lattice two-body spectru
presents peculiar features not present in the continuum,
think it is desirable to give a more complete description
the spectral properties of one- and two-particle lattice Ham
tonians.

Within this context, we consider the two-particle Ham
tonian in,2(Zd)3,2(Zd) taken as

H25
2D1

2m1
1

2D2

2m2
1v12~xW12xW2![H01V2 , ~1!

with D15D ^ I andD25I ^ D, wherem1 ,m2.0 are the par-
ticle masses,xWPZd andD is the lattice Laplacian@ej being
the unit vector along thej th direction andf P,2(Zd)#

2D f ~xW !52d f~xW !2(
j 51

d

@ f ~xW1ej !1 f ~xW2ej !#. ~2!

The one-particle lattice Hamiltonian, acting in the spa
,2(Zd), is
©2002 The American Physical Society30-1
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H15
2D

2M
1v~xW ![H01V1 . ~3!

Here,M.0 is the particle mass andv(xW ) is a real potential
verifying limuxW u→`uxW u11kv(xW )50 andv(xW )5v(2xW ), k.0.

For V250, the HamiltonianH2 has a band spectrum. Th
system lattice unitary translation operator commutes w
H2, and we can define self-adjoint momentum operatorsPj ,
satisfying @Pi ,Pj #50, i , j 51, . . . ,d. Here, we will be in-
terested in the energy spectrum ofH1, and the joint spectrum
of (H2 ,PW ), called the energy-momentum spectrum.

We mention some features of the lattice HamiltoniansH1
and H2. A unitary staggering transformation~see@8#! maps
low-energy spectrum to high-energy spectrum of the tra
formed Hamiltonians. In particular, the HamiltonianH1 of
Eq. ~3! with an attractive delta potential (V5ld,l,0) is
transformed to a Hamiltonian with a repulsive delta poten
(V5ld,l.0). For anyl if d51,2, and for suitably large
ulu, if d>3), while the attractive case gives rise to a bou
state below the band, there is a bound state above the ba
the repulsive case.

For H2 of Eq. ~1!, we distinguish two cases, depending
whether or not the two massesm1 andm2 are equal. We first
consider the casem15m2. For an attractive delta potentia
we find a bound state below the band ford51,2, and the
binding energy increases as the system momentum incre
i.e., the bound-state curve does not approach the band.
result is in contrast to the well-known case of the nonrela
istic continuum, where the binding energy is independen
the system momentum; and the case of two particles obe
relativistic kinematics where, based on purely kinemati
grounds, the binding energy decreases as the system mo
tum increases. Ford>3, and momentum zero, there is
bound state only forl less than a critical valuelc,0. How-
ever, for arbitrarily smallulu, l,0, there is a bound stat
for sufficiently high momentumuqu.qc.0. Here, the bind-
ing energy goes to zero asuqu→qc

1 , and the bound state
approaches the band. This result is in contrast with the c
tinuum case, where the Birman-Schwinger bound~see@15#!
excludes bound states for sufficiently small potentials.

We now consider the casem1Þm2, and the attractive
delta potential. Ifd51,2, there exists a bound state for a
small ulu, l,0. For dimensiond>3, for all values of the
system momentum, no bound state exists for smallulu, in
agreement with the continuum.

We now describe the organization of the paper. In Sec
we define the staggering transformation on the two-part
space and show how to separateH2 into a free system
Hamiltonian and a relative coordinate interacting Ham
tonian which depends on the system momentumqW . The sepa-
ration is achieved using an eigenfunction expansion base
plane waves in the sum and difference coordinates. In
way, we establish the general grounds of our two-part
analysis for general system momentumqW and massesm1 and
m2. Using the Lippmann-Schwinger equation, in Sec. III, w
determine the spectrum and the scattering for the Ha
tonianH1 of Eq. ~3!, which describes theqW 50W physics of the
01613
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problem. Spectral results forH2 of Eq. ~1! are obtained in
Sec. V form1Þm2 and in Sec. IV form15m2. Finally, in
Sec. VI, some concluding remarks are made.

II. SPECTRUM FOR H 2

To determine the spectrum ofH2, we introduce the lattice
translation operator,TaW f (xW1 ,xW2)5 f (xW12aW ,xW22aW ), with aW
PZd. This operator commutes withH2 and is unitary. We
write TaW5exp@iPW •aW# which defines the self-adjoint system
momentum operatorsPj , j 51, . . . ,d, and system momen
tum qW PTd, with Td5(2p,p#d. Since@Pj ,H2#50, we de-
termine the joint energy-momentum spectrum of (H2 ,PW ).

We define the staggering transformation acting in the tw
particle space,2(Zd)3,2(Zd) by

U f ~xW1 ,xW2!5~21!(
j 51

d

(x1
j
1x2

j ) f ~xW1 ,xW2!, ~4!

which is unitary and, sinceU25I , we haveU215U. From
Eq. ~4!, it is easily seen that@U,TaW #50 and @U,S#50,
whereS is the projection on the symmetric~even! subspace
given byS5 1

2 (I 1P), whereP is the permutation operato
Pf (xW1 ,xW2)5 f (xW2 ,xW1).

For V5ld, we find thatH2 has the following intertwin-
ing property:

UH25UF2D ^ I

2m1
1

I ^ 2D

2m2
1ldG

5F4dS 1

2m1
1

1

2m2
D2S 2D ^ I

2m1
1

I ^ 2D

2m2
2ld D GU,

so that, for each system momentumqW , the negative bound-
state eigenfunction for the attractive casel,0, is trans-
formed byU into the positive bound-state eigenfunction f
the repulsive casel.0. Keeping this in mind, it is enough to
determine, e.g., the spectrum below the band.

Here, we obtain the spectral representation ofH2 via an
eigenfunction expansion. Let us first remark that, althou
we do not have separation of the Hamiltonian in center-
mass and relative coordinates, as in the continuum,H2 com-
mutes with TaW . So, we consider expanding a functio
f (xW1 ,xW2) in terms of the non-,2 functions

c~xW1 ,xW2 ,pW ,kW !5
1

~2p!2d
eikW•(xW11xW2)eipW •(xW12xW2).

The functionc is an eigenfunction of the system momentu
operatorPW , with eigenvalue 2kW[qW . Also, c is an eigenfunc-
tion of the free system HamiltonianH0, with eigenvalue
0-2
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K~pW ,kW ![2
1

2m1
D̃~pW 1kW !2

1

2m2
D̃~pW 2kW !

5
1

2m1
(
j 51

d

2@12cos~pj1kj !#1
1

2m2

3(
j 51

d

2@12cos~pj2kj !#.

Here, we see that the eigenvalue does not split into a sum
center-of-mass and relative kinetic energy as in the c
tinuum using center-of-mass and relative coordinates. H
ever,H0 is still a multiplication operator. It has a band spe
trum for anyd, with a finite width which can become zero
the system masses are equal and the system momentumqW is
equal topW [(p, . . . ,p). Furthermore, thec ’s obey the fol-
lowing orthogonality and completeness relations:

E E c̄~xW1 ,xW2 ,pW 1 ,kW1!c~xW1 ,xW2 ,pW 2 ,kW2!dxW1dxW2

5d~kW12kW2!d~pW 12pW 2!;

E
Td
E

Td
c̄~xW18 ,xW28 ,pW ,kW !c~xW1 ,xW2 ,pW ,kW !dpW dkW

5d~xW12xW18!d~xW22xW28!.

Turning now to the time-dependent Schro¨dinger equation,
we write

C~xW1 ,xW2 ,t !5
1

~2p!dE a~kW !f~xW1 ,xW2 ,kW !e2 iE(kW )tdkW ,

whereC satisfiesi ]C/]t5H2C, if we takef such that

H2f5E~kW !f, ~5!

with f(xW1 ,xW2 ,kW )5eikW•(xW11xW2)x(xW22xW1 ,kW ) and xW (xW ,kW )
5(2p)2d*b(pW ,kW )eipW •xWdpW . Substituting in Eq.~5!, canceling
theeikW•(xW11xW2) factor, and taking the Fourier transform in th
relative coordinatexW5xW22xW1, we obtain

@K~pW ,kW !2E~kW !#b~pW ,kW !1
l

~2p!dE b~pW 8,kW !dpW 850. ~6!

Multiplying Eq. ~6! by (K2E)21(pW ,kW ) and integrating over
pW leads to the eigenvalue equation

11
l

~2p!dETd

dpW

K~pW ,kW !2E~kW !
50. ~7!

The corresponding eigenfunction is proportional
eikW (xW11xW2)*Td$eikW (xW12xW2)/@K(pW ,kW )2E(kW )#%dpW .

We point out that for a general potentialV(xW12xW2), we
still reduce the two-particle problem to that of solving a on
01613
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particle problem. In this case, Eq.~6! becomes, after cancel
ing theeikW•(xW11xW2) factor, and settingxW[xW22xW1,

1

~2p!dETd
@K~pW ,kW !2E~kW !#b~pW ,kW !eipW •xWdpW

1V~xW !
1

~2p!dE b~pW ,kW !eipW •xWdpW 50.

Taking the Fourier transform inxW gives

@K~pW ,kW !2E~kW !#b~pW ,kW !1
1

~2p!d

3E
Td

Ṽ~pW 2pW 8!b~pW 8,kW !dpW 850,

i.e., the time-dependent Schro¨dinger equation in momentum
space with a kinetic energy that depends on the system
mentumqW 52kW .

III. SPECTRUM OF H 2 FOR ZERO SYSTEM MOMENTUM

For kW50W , Eq. ~6!, with m5m1m2 /(m11m2), is

2D̃~pW !

m
b~pW !1

l

~2p!dETd
b~pW 8!dpW 85Eb~pW !,

which is the equationH1c5Ec in momentum space, taking
m52M . We point out that the above is the same equation
that obtained for normal modes of polarized classical os
lations of a monatomic isotropic crystalline lattice with a
isotopiclike defect at the origin@20–23#.

To derive the spectral properties of the HamiltonianH1
of Eq. ~3!, it is convenient to use the Laplacian inH0
of Eq. ~2! without the constant diagonal term, i.e., wi
D f (xW )5( j 51

d f (xW1ej )1( j 51
d f (xW2ej ). With this choice,

the spectrum is given by the values ofE(qW ), corresponding
to the energies of the noninteracting system,E(qW )
521/M( j 51

d cosqj, qWPTd, and has the energy rang
@2d/M ,d/M #.

Note that if we take bothm1 and m2 to be equal tom
.0 in the free partH0 of the HamiltonianH2 of Eq. ~1!, and
if we set M5m/2 in Eq. ~3!, then the energy interva
@2d/M ,d/M # also describes the momentum spectrum of
free two-particle system with relative momentumkW , total
momentumqW 50W , and particle massesm. As it is known, the
free part of H2 has a band spectrum, for any fixed tot
momentumqW . This is why we refer to the energy range
E(qW ) as a band. Also, for convenience and without spoili
the analysis for the general mass model, we will assu
2M51 throughout this section. The band then becom
@22d,2d#.
0-3
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The causal~retarded! Green’s function associated with th
HamiltonianH0, is ~for h→01)

G0
.~xW ,yW ;E![@~E1 ih!2H0#21~xW ,yW !

5
1

~2p!dETd

eiqW •(xW2yW )

E1 ih2E~qW !
dqW . ~8!

An important property of the Green’s function of Eq.~8!
is its transformation under the one-particle unitary stagge
transformation U. In the configuration space, we hav

U f (xW )5(21)( j 51
d xj

f (xW ); f P,2(Zd), and satisfiesU25I
andU215U. In words,U transforms smooth functions int
rough functions and vice versa.U has the intertwining prop-
erty 2D1ld5U@21(2D2ld)#U21. In momentum
space, the action of the staggering transformation beco
(U f );(pW )5 f̃ (pW 2pW ), pW PTd. From the definition ofU, and
the staggering transformation properties of the Laplacian
der U, it follows thatG0

.(E) satisfies the property

G0
.~xW ,yW ;E!52~21! ( j 51

d (xj 2yj )G0
,~xW ,yW ;2E!, ~9!

where G0
, is the advanced Green’s function which is o

tained replacingh by 2h in Eq. ~8!.
It is a general feature that the imaginary part of the tra

of a one-particle Green’s function is related to the on
particle density of states of its associated Hamilton
@16,17#. Here, the densityD(E), per lattice point, of the
~free-!particle states of the Laplacian, at a given energyE, is
given by

D~E!5
1

~2p!dETd
d„E2E~qW !…dqW . ~10!

Using the staggering transformation, withxW5yW50W , it
follows that D(E) is an even function ofE. Also, since
the eigenvalues of the Laplacian exist only f
EP@22d,2d#, D(E) is zero outside the band. Beside
D(E) is strictly positive in (22d,2d). Near the band edge
62d, D(E) shows Van Hove singularities of the form

D~E!.
d

~2Ap!dGS d

2D Fd2
E2

4dGd/221

; uEu.2d. ~11!

Although D(E) may diverge at the band edges, its integ
remains finite, with integral one over the band. Ifd51, Eq.
~11! holds as an equality, for anyE. For d52, D(E) has
jump discontinuities at the edges and has a logarithmic
gularity atE50. For generald>3, D(E) is continuous and
bounded.

For P denoting the Cauchy’s principal value, let

F~E!5PE
22d

2d D~E8!

E2E8
dE8,
01613
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which has the interpretation of an electric field of a tw
dimensional line charge distributionD(E). Using Eq.~10!,
Eq. ~8! becomesG0

.(0,0;E)5F(E)2 ipD(E). We remark
that F(E) is the Hilbert transform of an even and strict
positive function. It follows thatF(E) is odd in (22d,2d),
monotonically decreasing outside the band, and continu
at least inside the band but near the edges. Ifd51, F(E)
vanishes inside the band and is exceptionally given
sign(E)/AE224, if uEu.2. If d52, F(E) has an infinite
logarithmic discontinuity at the band edges, and is boun
for d>3, at least near the band edges.

From the above behavior ofG0
. , the spectral properties

of H1 can be now consistently discussed in terms of
associated Lippmann-Schwinger equation, i.e.,

c.~xW !5f~xW ;E!1(
yW

G0
.~xW ,yW ;E!V~yW !c.~yW !, ~12!

where f(xW ;E) is a suitably chosen eigenstate ofH0, with
energy EP(22d,2d). For the localized potentialV(xW )
5ld(xW ), Eq. ~12! has the solution

c.~xW !5f~xW ;E!1
lf~0;E!

12lF~E!1 iplD~E!
G0

.~xW ,0;E!.

~13!

SinceV is localized atxW50, only free-particle statesf(xW ;E)
having nonzero amplitudes atxW50 are scattered. Taking Eq
~13!, we notice that the scattered wave contains a term~a
‘‘scattering amplitude’’! with a factor

f ~E!5
l

@12lF~E!#1 iplD~E!
, ~14!

which is infinite, under some circumstances. The condit
for a singularity to occur inf (E) is given by

12lF~E!50; lD~E!50. ~15!

When E lies in (22d,2d), the above properties ofF(E)
ensure that the first of these conditions can be satisfied
d>2, but not ford51, whereF(E)[0 in the band. On the
other hand, ford52, sinceF(E) becomes infinite at the
band edges, the first condition is satisfied for anyulu. For
small enoughulu, if l,0, the solution occurs at someE
close to22d, and atE close to 2d, if l.0. A similar argu-
ment holds ford>3. However, sinceF(E) is now bounded,
a critical valuelc exists and a solution is found, for eac
sign of l, only for ulu.ulcu.0. Regarding the second con
dition in Eq.~15!, recall thatD(E) is finite and nonzero nea
62d, for all d>2. Ford52, the only possibility for having
the productlD(E) small is to take small enough values
ulu. D(E) is arbitrarily small, ford>3, if E is close enough
to 62d, whereD(E) vanishes. Thus, a resonance appe
for small l in d52 and for ulu above but nearulcu, for d
>3.

In the same way, bound states of the HamiltonianH1
correspond to singularities of scattering amplitudes, regar
0-4
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as functions ofE. When both conditions of Eq.~15! are
simultaneously satisfied, the Lippmann-Schwinger Eq.~12!

may present nontrivial solutions even whenf(xW ;E) is set to
be a null function, which is the case ifE is outside

@22d,2d#. In fact, lettingf(xW ;E)[0 in Eq. ~12!, we find,
for the bound states,

cb~xW !5lG0
.~xW ,0;Eb!cb~0!. ~16!

Provided thatcb(0)Þ0, a nontrivial solution emerges whe
12lG0

.(0,0;Eb)5@12lF(Eb)#1 ilD(Eb)50, which is
equivalent to Eq.~15!. As before, the first of these condition
can always be met, for someE, provided thatl is suitably
chosen. The second one requires, consistently with the
ishing of f(xW ;E), the bound-state energyEb to satisfyuEbu
.2d, whereD(E) vanishes. SinceF(E) is odd and mono-
tonically decreasing outside@22d,2d#, a unique finite
bound-state solutionE5Eb(l) exists either for the attractive
and the repulsive potentials. Forl,0, we haveEb(l)
[Eb

↓(l),22d and the corresponding binding energy ise
522d2Eb

↓(l). By staggering@since F(E) is odd#, for l
.0, it follows that Eb(l)[Eb

↑(l)52Eb
↓(2ulu).2d and

the binding energy is obviously the same. Ford<2, where
F(E) diverges near the band edges, a bound state exist
any value ofl. For d>3, whereF(E) is bounded, a bound
state still exists but only forl depending on a critical value
lc . Staggering guarantees, for each of the cases, eithe
tractive or repulsive, a symmetrical pattern around the b
@22d,2d#. Knowing the spectrum for one of these tw
cases, the other one is obtained by reflection about
middle of the bandE50. For a physical interpretation fo
the existence of the~nonintuitive! bound state, forl.0, in
terms of a system of classical oscillators, see@19#.

Turning to the bound state wave functions, from Eq.~16!,
we see that the bound-state wave functions are determ
by G0

.(0,xW ,Eb). The asymptotic behavior, for largeuxW u and

Eb,22d, is dominated byqW .0 in Eq. ~8!, leading to, for
uxW u→`,

G0
.~0,xW ,Eb!.2

2

~2Ap!d S Ae

2uxW u
D d/221

Kd/221~AeuxW u!,

~17!

whereKn5K2n is the modified Bessel function of ordern
ande.0 is the binding energy. Thus, apart from a norm
ization, for largeuxW u, the wave function for thel,0 case
satisfies

cb
↓~xW !.uxu12d/2Kd/221~AeuxW u!,

which shows that it is exponentially decreasing, the de
rate being uniform inxW and depending only ond ~and on the
massm). Using the transformation property ofG0

. under the
staggering transformation, it follows that

cb
↑~xW !.~21!( j 51

d xj
uxu12d/2Kd/221~AeuxW u!
01613
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describes the asymptotic behavior of wave function of
bound state with positive energy (l.0). It is worth noting
that these asymptotic formulas are valid only whene!4d
that is, the limit of weak binding. In this limit, the appea
ance of the bound states can be understood from the hyb
ization of qW states associated with energies close to62d.
Also, we remark that if the binding energye is large com-
pared to 4d, an exponential decay behavior atuxW u→` per-
sists for any of thecb(xW ). This can be seen applying th
Payley-Wiener theorem@18#, using the analyticity properties
on a strip about the real axis of the Fourier transform ofG0

. .
However, a closer examination shows that the decay
depends on the direction, and the asymptotic behavior is
isotropic.

If d51, G0
.(0,x;E) can be explicitly calculated for any

value of x. We obtain, for a5cosh21(11e/2)
.0, G0

.(0,x;Eb)5const.e2auxu. This equation agrees with
Eq. ~17!, with d51, except for the fact thataÞAe. The
conditiona.Ae is only recovered in the limit of weak bind
ing e'0.

Before closing this section, we determine the effect of
staggering transformation on the wave and scattering op
tors ~see @24#!. Making explicit the l dependence inH1
[H1(l), we define the wave operatorsW6(l)
5s2 limt→6`eiH 1(l)te2 iH 0t. We have, recalling tha
U21H1(l)U52H1(2l),

W6~l!U5s2 lim
t→6`

UU21eiH 1(l)tUU21e2 iH 0tU

5U@s2 lim
t→6`

e2 iH 1(l)teiH 0t#5UW7~2l!.

For the scattering operatorS(l)[W1(l)* W2(l), we find

US~l!U215UW1~l!* UU21W2~l!U21

5W2~2l!* W1~2l!5S~2l!* .

In terms of the Fourier transform of the transition matr
T̃(pW ,kW ;l),

S̃~pW ,kW !5d~pW 2kW !22p i d„E~pW !2E~kW !…T̃~pW ,kW ;l!

and S̃(pW ,kW ) is the Fourier transformed kernel ofS. By con-
sidering the effect of a staggering transformation in mom
tum space, forpW ÞkW but E(pW )5E(kW ), we have

T̃~pW ,kW ;l!52 T̄̃~pW 2kW ,pW 2pW ;2l!,

which is seen to hold for the explicit solution obtaine
above, i.e.,

T̃~pW ,kW ;l!5l@12lG0
.
„0,0;E~kW !…#21. ~18!

Note that the on-shell limit~diagonal part! Eq. ~18! gives
f (E) of Eq. ~14!.
0-5
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IV. SPECTRAL RESULTS FOR H 2: UNEQUAL MASSES

For d51, we have the eigenvalue equation

11l
1

2pE2p

p 1

g~p,q!2z
dp50, ~19!

where

g~p,q!5
1

2m1
@2d22„cos~q/2!cosp2sin~q/2!sinp…#

1
1

2m2
@2d22„cos~q/2!cosp1sin~q/2!sinp…#

[a cosp1b sinp1c.

But

E
2p

p dp

a cos~p1r !2z
5

2p

~z2a!1/2~z1a!1/2

with a5a cosr, andb5a sinr andz5z2c, so that Eq.~19!
becomes

11l
21

2@z2w1~q!#1/2@z2w2~q!#1/2
50, ~20!

with solutions

w6~q!5
1

m
6Fcos2~q/2!

m2
1

sin2~q/2!

g2 G 1/2

, ~21!

m5m1m2(m11m2)21 andg5m1m2(m22m1)21. Note that
w6(qW ) are precisely, respectively, the upper and lower en
lopes for the band, i.e. the energy envelopes for two parti
with total system momentumqW . For the attractive case,l
,0, lettingz5w2(q)2e, e.0, we have a bound state wit
binding energy

e52
~w12w2!

2
1

1

2
@~w12w2!21l2#1/2. ~22!

The results for unequal masses andd51 are depicted in
Fig. 1.

For dimensiond and system momentumqW 5pW , the bound
state equation is

11
l

~2p!dETd

dpW

(
j 51

d S 1

m
1

sinpj

g D2z

50,

or, with z5d(1/m21/g)2e, the binding energye.0 veri-
fies

11
l

~2p!dETd

dpW

(
j 51

d
1

g
~sinpj11!1e

50,
01613
-
s

which, noting that 11sinpj can be replaced by 12cospj,
has a solution forl,0, ulu arbitrarily small, only ford
51,2, but not for d>3. This agrees with the Birman

Schwinger bound~see @15#!. The band width atqW 5pW is
2d/g.

To close, we remark that the staggering transformat
allows us to obtain spectral results for the repulsive de
function potential (l.0) from those of the attractive cas
(l,0).

V. SPECTRAL RESULTS FOR H 2: EQUAL MASSES

In the case of equal masses,g becomes1`. This is the
case relevant to the correspondence with the infinite non
ear lattice quantum models, since the resolvent of t
Hamiltonian is similar to what occurs in the Bethe-Salpe
equation. This is why our analysis is more complete he
Without loss of generality, setting 2m152m251, we have
m51/4. Equation~6! becomes, for system momentumqW

52kW ,

4(
j 51

d

cos
qj

2
~12cospj !b~pW !1

l

~2p!dE b~pW 8!dpW 8

5FE2S 4d24(
j 51

d

cos
qj

2 D Gb~pW !, ~23!

which is the momentum space form of the normal mo
equation for classical polarized oscillations of an anisotro

FIG. 1. The energy-momentum spectrum for the cased51 and
unequal masses, withm250.2m1. The most inner curves are th
band envelopes. All its interior points also belong to the spectr
Its lower and upper envelopes do not coincide atq56p. For l
,0, only the isolated bound state lower dispersion curves app
for l.0, only the isolated upper curves appear. The curves clo
to the band describe bound states forl2526 and the farthest curve
are for l2580. These curves change concavity for some mom
tum value. Also, the band envelopes change from convex to c
cave. The gaps between each pair of symmetrical curves and
band are equal, and the binding energies increase as the sy
momentum increases.
0-6
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crystalline lattice with a point defect@20,21,23#. The anisot-
ropy depends on the direction of the system momentum;
qW 50W , the first term is the isotropic kinetic energy22D̃(pW ).

The eigenvalue equation becomes

11
l

~2p!dETd

dpW

4d24(
j 51

d

cos~qj /2!cospj2E

50,

which leads to the equation for the binding energy@see Eq.
~25! below#.

We first taked51. Eqs.~19! to ~22! hold in theg→`
limit. Solving the bound state equation givese5
2 1

2 „w1(q)2w2(q)…1 1
2 @„w1(q)2w2(q)…21l2#1/2, which

determinesEb(q). From this solution, we see that this boun
state curve does not intersect the band for all values ofq.

As for the one-particle case, we now consider the effec
a staggering transformation on the two-particle Hamiltoni
For d51, this will give us a bound state curve, for the r
pulsive case, above the band atz5w1(q)2e, e.0, with
gape given by the same expression as above, for the att
tive case. The final result ford51 is summarized in Fig. 2

Let us turn to the casesd>2. Setting f (pW ,qW )54d
24( j 51

d cos(qj/2)cospj, the condition for a bound state is

11
l

~2p!dETd

1

f ~pW ,qW !2z
dpW 50. ~24!

To determine the bound state below the band, in the
tractive case,l,0, with fixed qW , it is convenient to define
f min(qW )[minpWPTdf (pW ,qW )5( j 51

d 4(12cosqj/2) and setz(qW )

5 f min(qW )2e(qW ), e.0, being the binding energy. Th
bound state condition of Eq.~24! becomes

FIG. 2. The equal mass energy-momentum spectrum for
cased51. The most inner curves are the band envelopes. All
interior points also belong to the spectrum. Forl,0, only the
isolated bound-state lower dispersion curves appear; forl.0, only
the isolated upper curves appear. The upper envelope for the ba
concave and the lower one convex. They join each other
q56p. The curves closest to the band describe bound states
l251.6 and the farthest curves are forl2534. These curves
change concavity for momentum close to6p. The gaps between
each pair of symmetrical curves and the band are equal, and
binding energies increase as the system momentum increases
01613
r

f
.

c-

t-

11
l

~2p!dETd

1

4(
j 51

d

cos~qj /2!~12cospj !1e

dpW 50.

~25!

Note that the integrand in Eq.~25! is positive and is a con-
tinuous function ofe.0.

Another important observation is that, for anyd and any
l, there is always a solutione(pW )5ulu to Eq. ~25!, for qW

5pW . This is a trivial matter since the kinetic energy ter
vanishes. The eigenvalue equation is simplyld(xW )c(xW )
5E8c(xW ), E8542d5z24d5l52e, which has the mul-
tiplicity one eigenfunctiond(xW ) with eigenvalueE85l and
the infinite multiplicity eigenvalue zero with eigenfunction
d(xW2uW ), uW Þ0W . For qW 5pW , the band is a single point~see
Fig. 2!. The fact that the bound-state wave function is loc
ized in a single point is to be compared with the bound-st
~given below! wave function forqW 50W , which has exponen-
tial decay. This last result is in agreement with the results
Sec. III. All these results follow from the Payley-Wiene
theorem@18#.

We now give an interesting physical interpretation of t
above result. Note that the cosqj/2 factor in the kinetic-
energy term in Eq.~23! is the inverse of a directional mas
which increases for increasing system momentum,
which, in turn, lowers the energy. Note that this makes
equal mass case different from the unequal mass case. D
the unequal mass term, the operator does not have an i
pretation of an anisotropic one-particle lattice Schro¨dinger.
Also, another difference between the equal and unequal m
cases is that the band collapses to a single point, atqW 5pW ,
when the masses are equal. For example, ind51, we can
interpret theH2 eigenvalue equation as an equation for cla
sical polarized oscillations for particles in a two-dimension
lattice with defects along a diagonal line through the orig
~zero relative coordinate!. The bound states correspond to
multiplicity one normal mode having nonzero displaceme
only along the line of defects. There is also an infinite nu
ber of other normal modes, along parallel diagonal lines,
which the nonzero particle displacements only occur on
line. These are the modes that correspond to the coales
point of the band.

Back to the general case, ifd52 andqW ÞpW , the integral
diverges ase↘0. Since the integrand is strictly monotone
the binding energye.0, there is a unique bound-state sol
tion for eachl,0, which does not intersect the band. F
d>3, the integral in Eq.~25! converges absolutely and re
mains finite ase↘0. It defines a positive and even functio
of qW and, for fixedqW is strictly monotone decreasing fo
increasinge. Using the parity property on the components
qW , we concentrate our analysis to non-negative compon
qj , j 51, . . . ,d. For fixed l, differentiating Eq.~25! with
respect toqj , j 51, . . . ,d, shows that the components of th
gradient of the solutionse(qW ) are continuous and non
negative, vanishing only atqW 50W . In words, the binding en-
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ergy increases as the system momentum increases. This
contrast to the nonrelativistic continuum case, where
binding energy is independent of the system moment
Also, in the case of particles obeying relativistic kinemati
the binding energy of two particles decreases as the sys
momentum increases.

SettingqW 50W , a negative bound-state solution exists p
vided thatl,lc(0W ),0, wherelc(0W ) is the l solution to
Eq. ~25! with qW 50W in the limit e↘0, i.e.,

11
lc~0W !

~2p!dETd

1

4(
j 51

d

~12cospj !

dpW 50. ~26!

Thus, using the continuity ine, we extend the argument an
a solutione(qW ) is shown to exist for a neighborhood ofqW

50W . A new critical valuelc(qW ),0 emerges at eachqW . In this
way, we can iterate the use of continuity ine to show the
existence of a solution for eachqW up toqW nearpW . We remark
that, from Eq.~26!, we also know that the components of th
gradient oflc(qW ) are continuous, positive, finite, and strict
increasing functions, for allqW ÞpW ), the final conclusion is
that a bound-state curve, which never intercepts the ban
present at least provided thatl,lc , wherelc is the critical
value determined bylc5minqWPTd lc(qW ).

We now show, ford>3, l,0 and ulu is arbitrarily
small, that there is a region ofqW space contained in
(2p,p#d, and containingqW 5pW , such that a bound-state ex
ists. We know there is a bound-state solution forqW 5pW and

@]e/]qj #(pW )52, so that, forqW .pW , we have e(qW ).2l

12( j 51
d (qj2p). That means there is a bound state forqW

near pW . The vanishing of the binding energye(qW ) deter-
mines, approximately, the hyperplane 2( j 51

d (qj6p)5l.

Thus, a bound state exists for the region ofqW space bounded
by the boundary of the hypercube (2p,p#d, but bounded
away from it, and the hyperplane. Besides, we know
binding energy vanishes fore(qW )50. Thus, there is a boun
state for a region inqW space bounded by the cub
(2p,p#d and the hyperplane 2( j 51

d (qj1p)5l. A more
detailed picture of the zero binding-energy surface can
obtained numerically. As an example of a bound state em
ing away from zero system momentum, we considerd53
andq25q350. Then the bound-state equation becomes

11
l

~2p!3ET3

dpW

h~pW ,q1!1e
50,

for h(pW ,q1)54 cos(q1/2)(12cosp1)14(12cosp2)14(1
2cosp3). We consider small negativel. For q150, the in-
tegral is finite fore>0 such as there is no bound state. O
the other hand, forq15p, the integral reduces to a two
01613
in
e
.

,
m

-

is

e

e
g-

dimensional integral which diverges ase↘0, and there is a
unique bound-state solution. By continuity inq1, the bound
state persists down to some minimal value ofq1.0. We
remark that there is a Birman-Schwinger-type bound be
this critical q1 value. The approximate bound-state curve
shown in Fig. 3.

VI. CONCLUSIONS

Emphasizing how the use of staggering transformati
can be important in understanding the low-lying spectrum
quantum lattice systems, we have obtained interesting s
tral features for the~one- and! two-particle Schro¨dinger op-
erator onZd, with a delta potential, which are expected
occur in some infinite lattice nonlinear quantum system
Among other results which are hard to guess on the basi
pure intuition, we show that a bound state can appear,d
>3, if the system momentum is sufficiently high, for bo
the attractive and the repulsive cases, in all dimensions. A
even if the strength of the potential is arbitrarily small, t
higher is the system momentum in these cases, the m
stable the pair becomes. Whether this could favor a phen
enonlike condensation in some real system is a good q
tion to be analyzed.

Also, we have developed a framework within which th
effect on the spectrum can be determined for more gen
potentials. Also, here we considered perturbation of Lap
cians, but more general kinetic-energy operators, as occu
the infinite lattice systems mentioned in the Introduction, c
also be analyzed with our methods.

It would be interesting to get a complete picture of t
zero binding-energy surfaces, even in the ladder approxi
tion, for the stochastic model, the nonlinear mass spring s
tem and the spin system described above.

ACKNOWLEDGMENTS

This work was partially supported by Pronex, CNPq, a
FAPESP.

FIG. 3. The approximate energy-momentum spectrum for
attractive cased53, small coupling, and equal masses. The syst

momentum isqW 5(q1[q,0,0). The upper curve is the band lowe
envelope, and we see that a bound state only occurs forq.0.
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